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Impedance Matching for Complex Loads Through
Nonuniform Transmission Lines

Gaobiao Xiao and Ken'ichiro Yashirélember, IEEE

Abstract—A numerical method for designing nonuniformtrans-  tionsdV/dz = —jwL(z)I, dI /dz = —jwC(z)V . Define elec-
mission lines (NTLs) to match complex loads is presented. This trical position as [12], [13]
method is based on solving an inverse problem derived from the
telegrapher’s equation. The matched NTLs are expected to have #
bangpalsss chargcteristics covering the sampling fre%uency points. z(z) = fe / VL(s)C(s)ds 1)
A numerical algorithm is provided and verified by examples. 0

Index Terms—mpedance matching, inverse problem, nonuni- and the characteristic impedance of the line Aagz) =
form transmission line. L{z(z)]/C[z(x)]. = is normalized in interval0, 1), which
implies that the length of the NTL is chosenfas= A, A\. is
the guided wavelength in NTLs at normalizing frequerfgy
The telegrapher’s equation can be deduced to the following
MPEDANCE matching for complex loads is often encounSturm—Liouville’s equation:
tered in microwave engineering. In addition to conventional

|I. INTRODUCTION

matching networks, nonuniform transmission lines (NTLs) ¢ (z) + [N — q(2)]p(z) =0 2
have also been applied for them. Parabolic tapered transmissioi

lines (PTLs) are investigated by several authors, and a family do(x) B . _

of equivalent circuits based on Kuroda’s identity are available dz K(z)(z) + jwy () =0 3)
[1]-[3]. They have been used to match lumped selR€doad, B B
parallelRL load, or Brune type sections, while extra reactanddhere ¢e.w) = V(z,w)/V/Zo(z), Y(z.w) =

elements are usually required to cancel the imaginary part%@’w) Zo(x), and A = °.02' The potential functlon](a:)'
the transformed impedance. Other NTL synthesis techniq d _paramete_rk(a:) (sometimes called the local reflection
[4]-[10] are, in general, not suitable for handling impedancgpeﬁ'ment) satisfy
matching problems for complex loads. 1 " 1

The authors have proposed a numerical method to synthe- —— | —¢z)——==0 4
size NTLs in [11], and have successfully applied it to designs < ZO(x)) Zo()
of filter. However, since both the amplitude and phase charac- 1 ! 1
teristics ofS-parameterS; (jw) are required in the method, it <T()> — k(x) 7o) =0. (5)
is not convenient for synthesizing tapered NTLs for matching o\x o\®
complex loads. This paper extends the method, and make it ppge incident and reflected waves are defined #ya; =
sible to design tapered NTLs for matching complex loads from(o, jw) 4 Z,1(0, jw), 2h5by = V(0,jw) — Z21(0, jw)
|S11(jw)| alone. No extra reactance element is needed. Desigiid 2h,as = V(1,jw) — ZI(1, jw), 2hiby = V(1,jw) +
theory and formulas are discussed in Section Il, while an & 1(1, jw), where2hyhl = Z, + Z%,2hh = Z; + Z;.
gorithm will be described in Section Ill. Design examples founder these definitions, the reflection coefficient for a matched
lumped serieRC will also be illustrated. The present methodNTL is [['(jw)| = |S11(jw)].
may seem to be a little complicated, but is not difficult to imple- On the other hand, we denote the two linearly independent

ment in a personal computer. solutions of (2) agyi(x, A) andya2(z, \), wherey,(0,\) =
1,41(0,)) = 0 andy2(0,A) = 0,%5(0,\) = 1. By a similar
II. DESIGN THEORY analysis method provided in [113;; (jw) andS2; (jw) can be

expressed in terms 1,A 1,A),51(1, A), y5(1,\) and
Let the current and voltage in a lossless NTL be denoted Rylfr parameters 0@(09)’](112(’1) )7Zz2((())7ar2£jyzlo((1’) ;’SyQ( N
I(z,w) andV (z,w). They must satisfy the telegrapher’s equa- ’ ’

N(jw)
Suliw) = =5 (6)
D(jw)
. 27w
Manuscript received February 10, 2001. S21 (Jw) B D(jw) (7)
The authors are with the Department of Electronics and Mechanical Engi-
neering, Chiba University, Chiba 263-8522, Japan. IThis flexible choice is very convenient. The practical length of the NTL can
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where where «;,03;,v; and u; are zeros of y(1,),
yi(1,A), 52(1,A) and ¢4(1, ), respectively. P, =

D(jw) [(i — 0.5)7]?, Q; = (i7)2. M is the number of zeros that
= ! ZiZ we want to modify.
V Zo(0)Zo(1) hehg 2) The Wronskian ofy; (1, A) andy»(1, \) satisfy
| (G0 = k6) - POPE 0] W) =N AR =1 @8
. [ Zo(1) Zo(0) . We have verified that, in the case of a lossless NTL, the
T { Zg @A) - Zg (b(Dy2(1,) above Wronskian will lead to the well-known relationship
)@ S + [Sus(Ge)f? = 1. a7)
N(jw) 3) The potential functio(x) can be uniquely constructed
1 ZeZ, either from the two sequences af and/j3; or from ~;
AT N * and ;. The two potentials generated in these two ways
Zo(O)Zo(].) héhg . . . . R
are in agreement if the above Wronskian relationship is
% {[_ (G1(>\) — k(l)GQ()\)) satisfied.
These properties show that a preassigned frequency re-
~ Zo(0)Zo(1) 5 (1 )\)} sponse can be approximated through adjusting the four zero
Zy 7% WYL sequences ofy;, 3;,v;, and p;, and the four parameters of
Zo(1) Zo(0) £(0), k_(l), ZO(Q), andZy(1), and from those zero sequences a
—jw [TZGQ()‘) +— (R()y2(1,2) potential functiony(z) can be constructed. Recalling thgt:)
g relates with Zy(z), these formulas actually have associated

—y(1, )\))} } (9) the frequency response of an NTL with its fabrication feature.
However, there still remains another problem to cope with. By

and virtue of (5), we will find thatk(0) = —Z{(0)/[2Z,(0)] and
k(1) = —2Z4(1)/[270(1)]. Thus, there exist four boundary
G1(A) = y1(1,A) + k(0)yz(1, ) (10) data for the second-order equation (4). In order that there exist
Go(N) = 1 (1, A) + E(0)ya (1, N). (11) nontrivial solutions when solving,(z) from this equation, the

o . . four parameter<y(0), Zy(1), k(0), and k(1) must satisfy the
The main idea of the present synthesis method is: 1) USiRflowing additional conditions (see Appendix B):
the above formulas to approximate a requisite matching charac-

teristics for given load and source impedanZgsindZ, by se- Zo(0)
lecting proper functions afy (1, A), 2 (1, A), 4 (1, A), %4(1, A), v1(1,0) + £(0)y2(1,0) = Zo(1) (18)
and the four parameters 6{0), k(1), Zo(0) and Zy(1) and 2)

constructing the potential functiog() and the characteristic , , _ Zy(0)
impedance profileZy(z) of an NTL from those functions and Y1(1,0) + k(0)y2(1,0) = k(1) Zo(1) (19)
parameters. . o o

In order to describe our algorithm clearly, we are going to Obviously, the problem of approximating a requisite
quote some important properties involved at first. matching characteristics may be cast into a constrained non-

1) All four functions of y;(1,A), %1 (1,A),y=(1, ), and linear optimization problem. ) ,
44(1,)) are entire functions of order/2 (type 1) and In practice, complete matching can be achieved only at some

so are their linear combinations [14], [15]. They CalL}iiscrete frequency points througlh a tapered NTL with finite
be determined from their zeros and their asymptotlgngth' rll—lere, \(/jv_e_ ass;lme to‘desgn an NTL_tO rr;dmhand
behaviors uniquely. Especially f: g(s)ds = 0, the four Zg on the condition thatSy; (jw)| = psi (ps; = 0 for com-

entire functions can be expressed in the following ea lete matching) at discre_te sampling frequen_@i:e,,s -V Asi
1 = 1,...,N). The design may be accomplished in the fol-

calculating forms (see Appendix A): lowing two steps

M .
(1) = cosx/XZ o — A (12) Step 1) Determinex;, 3;, i, s and Zo(0), Zo(1), k(0), k(1)
1

P — ) from minimizing
in VA o= i — A N
y1(LA) = (Bo = N) Slr\l/_\){_ 2. ég Y (13) By =" [1Su(wsi)| = pi]” (20)
1 v 1

ya(1,\) = sin VX g~ % — A being subject to conditions (16), (18), and (19).
20 VA 4 Qi—A |S11(jw)] is calculated from (6).
M Condition (16) is inconvenient to apply directly
yh(1,0) = COS\/XZ pi = A (15) in calculation because it must be satisfied for all
— b — A values of. In the algorithm described below, we

(14)
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only request that this Wronskian relationship be sat-
isfied for all four zero sequences of, 3;,~;, and
;.2 Based on this consideration, we defined an error
function from (16) as follows:
M
Ey =3 [h(1 a1, 00) +1)°
' M

) [ e (L ) + 1)? Fig. 1.

1

+Z (L B)ua(L, B) — 1)

+Z n(1,7:)vh(1, %) - 1]° (21)
and from condltlons (18) and (19), we defined

20|
Zp(1)

200)]

b= Zo(1)

G2(0) —

+ |G1(0) — k(1)

IF(Jco)I =1S11(w)|

=y

Matching a lumped serié¥Cload through an NTL.

(c/f.) fol(l/\/(:eﬂ(s))ds, and the practical di-

mensions of the NTL can be determined from
Wy (z(x)) = W(x).

I1l. ALGORITHM AND EXAMPLES

Let ps; = 0. Itis readily verified thathy, b7, he andhy are
not necessary to calculate in calculatigg, (jw)|. Initial data
may be chosen a&,(0) = Re(Z,), Zo(1) = Re(Z;), k(0) =
/{}(1) =0, ando; = My = % B = Vi = Q; fori = 1,2,....

22) Bo = 0. The optimization process may be carried out iteratively
by adopting

o, Biy iy e @nd Zo(0), Zo(1), k(0), k(1) are then
determined from minimizing the following object
function:

E7(X) = ES(X) + COEZ(X) + Cle(X)

where vectorX = («j,B5,7;, 1y, Zo(0), Zo(1),
k(0), k(1)). co,c1 are weighting factors. Naturally, .
there are some limitations on controlling, | when 5, _
an NTL with finite length is used. It is difficult to
predict to what exterjtS;1 | can be controlled for ar-
bitrary Z, and Z,. In the special case of real and
Zg4,1511] is also an entire function of order not larger
thanl/2. Thus,|S11| can only be controlled at a dis-
crete frequency sequence with asymptotic behavior
like those of the above-mentioned zero sequences.
For complexz, andZ,, the frequency range that can
be controlled tends to be much narrower. For imped-
ances with large imaginary parts, longer NTLs may
be required to reach satisfactory matching.
Step 2) Construcf(z) from solving the inverse problem of
(2), using eithery;, 3; or v; and ;.
This has already been widely investigated, and
a numerical algorithm is available [16%y(x) can
be calculated frony(z). To calculate the practical
dimensions of the NTL, we have to represerty
z. For microstrip lines, we may first calculate the
linewidth W (z) and effective dielectric constant
ot () from Zo(z) [17], and then calculate from

c 1
=1 o @)

wherec is the light velocity in free space. There-
fore, the length of the tapered NTL i§ =

2We cannot prove that the Wronskian is strictly satisfied foalhen it is
satisfied for the four zero sequences, but the errors stemmed from this simplifi-
cation can be expected to be very small due to the features of the four unctions
involved.

X0+ — xo _ OB (25)

(23) wherer must be sufficiently small so that the process is stable.

Generally,r should use a smaller value for largef and V.
Without loss of generality, we consider the matching problem

inFig. 1, whereZ, = 50 2, andZ, is alumped serieRCcircuit.

= 100 ©2. Numerical results for three cases are as follows.

Case 1) Normalizing frequency is chosenfas= 2 GHz. C

varies from 1.5 to 10 pF. Sampling points are fixed
atf,; = 1 GHz andf,» = 1.25 GHz. Thus, we have
ws1 = 2nfs1/f. = mandw,s = 1.257. Fig. 2 show
the optimizedZ,(x) and the corresponding simu-
lated results ofS1; (jw)|, respectively. Smaller se-
riesC causes a larger imaginary partéf|.S11 (jw)|

in the passband for optimized NTLs tend to become
larger. Longer NTLs may be required to achieve
more satisfactory matching for smallét

Case 2)C = 3 pF, f. = 2 GHz. Two controlling points are

also selected, but the sampling spacing varies from
0.2 to 1 GHz. The numerical results are shown in
Fig. 3. It can be seen that the ripple between the
two sampling points is higher for a larger sampling

spacing.

Case 3) In practical applications, in order to obtain an NTL

that can be connected to outer lines continuously, we
may chooseZ,(0) and Zy(1) to be fixed and put
them out of the optimization process. Though this
arrangement may deteriorate the matching charac-
teristics, the side effect can be compensated by using
a longer NTL. An example is also provided, where
Z0(0) = 50 Q, Zp(1) = 100 ©2. C = 3 pF. Control-

ling frequencies are chosen As = [1 +0.125(¢ —
1)]GHz,: =1,...,N.Normalizing frequencies are
chosen ag. = 1 GHz. Fig. 4 shows the optimized
Zo(z) and relating simulatedS;; (jw)|. For com-
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Fig.2. Tapered NTLsforcase f: = 2GHz.Z, = 50Q. R = 1002.C = 1.5 pF~ 10 pF. Two sampling points are fixed Aif; = 1 GHz, f,» = 1.25 GHz.
M = 20. (a) OptimizedZ,(x). (b) Simulated S (jw)|.
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Fig. 3. Tapered NTLsfor case 2. =2 GHz.Z, = 50 Q2. R = 100 Q. C' = 3 pF. Two sampling points are adopted wiy = 0.2,0.25,0.33,0.5,1 GHz.
M = 20. (a) OptimizedZ, (). (b) Simulated S1.(jw)|.
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Fig.4. TaperedNTLsforcasef: =1GHz.Z, =50Q.R =100Q,C = 3pF.f,; = [1+0.125(i—1)]GHz,i =1,... ,N.M = 20for N <4, M = 40
for N > 4. (a) OptimizedZ, (). (b) Simulated S11(jw)|.

parison, in Fig. 4(b), a simulated result of a conven- sameZ, andZ, is also presented. Apparently, wider
tional short-circuited stub matching network for the matching band can be provided through an NTL.
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IV. CONCLUSION APPENDIX B

The numerical method described in this paper can be used t€learly, (4) is a special case of (2) far= 0. Thus, we can
design tapered NTLs for matching complex loads. Numericafite
examples presented not only validate this method, but also sug-

. 1
gest some ways to control the frequency range of matching and ——— = y1(z,0) + coya(z,0). (32)
the passband ripple levels of a tapered NTL. Zo(x)
From the boundary conditions at = 0, we have
APPENDIX A c1 = 1/\/Zy(0) andco = ¢1k(0). Hence,
We take (12) as an example. 1 1

Itis already known that; (1, A) can be expressed as [14] [y1(2,0) 4 k(0)y2(, 0)] (33)

\/ZO(w) V' Z0(0)

_ Cﬁ <1 3 i) (26) andatr =1, the following relations must be observed:
Z(0)

. 1,0 k(0 1,0) = 34
whereC is a constant, and; are zeroes of; (1, A). From the v1(1,0) + k(0)y2(1,0) Zo(1) (34)
estimate ofyy(1,\) = cos(vA)[1 + o(1)] asA — —oo [15], 70
we have Vi(1,0) + k(O)h(1,0) = k(1) | 220 (a5)

i Zo(1)
lim 2 ( ) =1. (27)
A——00 oS (\/_)
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