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Impedance Matching for Complex Loads Through
Nonuniform Transmission Lines

Gaobiao Xiao and Ken’ichiro Yashiro, Member, IEEE

Abstract—A numerical method for designing nonuniform trans-
mission lines (NTLs) to match complex loads is presented. This
method is based on solving an inverse problem derived from the
telegrapher’s equation. The matched NTLs are expected to have
bandpass characteristics covering the sampling frequency points.
A numerical algorithm is provided and verified by examples.

Index Terms—Impedance matching, inverse problem, nonuni-
form transmission line.

I. INTRODUCTION

I MPEDANCE matching for complex loads is often encoun-
tered in microwave engineering. In addition to conventional

matching networks, nonuniform transmission lines (NTLs)
have also been applied for them. Parabolic tapered transmission
lines (PTLs) are investigated by several authors, and a family
of equivalent circuits based on Kuroda’s identity are available
[1]–[3]. They have been used to match lumped seriesRC load,
parallelRL load, or Brune type sections, while extra reactance
elements are usually required to cancel the imaginary part of
the transformed impedance. Other NTL synthesis techniques
[4]–[10] are, in general, not suitable for handling impedance-
matching problems for complex loads.

The authors have proposed a numerical method to synthe-
size NTLs in [11], and have successfully applied it to designs
of filter. However, since both the amplitude and phase charac-
teristics of -parameter are required in the method, it
is not convenient for synthesizing tapered NTLs for matching
complex loads. This paper extends the method, and make it pos-
sible to design tapered NTLs for matching complex loads from

alone. No extra reactance element is needed. Design
theory and formulas are discussed in Section II, while an al-
gorithm will be described in Section III. Design examples for
lumped seriesRC will also be illustrated. The present method
may seem to be a little complicated, but is not difficult to imple-
ment in a personal computer.

II. DESIGN THEORY

Let the current and voltage in a lossless NTL be denoted by
and . They must satisfy the telegrapher’s equa-
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tions . Define elec-
trical position as [12], [13]

(1)

and the characteristic impedance of the line as
. is normalized in interval , which

implies that the length of the NTL is chosen as , is
the guided wavelength in NTLs at normalizing frequency.1

The telegrapher’s equation can be deduced to the following
Sturm–Liouville’s equation:

(2)

and

(3)

where ,
, and . The potential function

and parameter (sometimes called the local reflection
coefficient) satisfy

(4)

(5)

The incident and reflected waves are defined by
,

and ,
, where .

Under these definitions, the reflection coefficient for a matched
NTL is .

On the other hand, we denote the two linearly independent
solutions of (2) as and , where

and . By a similar
analysis method provided in [11], and can be
expressed in terms of and
four parameters of and as

(6)

(7)

1This flexible choice is very convenient. The practical length of the NTL can
be obtained when the characteristic impedance profile is determined.
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where

(8)

(9)

and

(10)

(11)

The main idea of the present synthesis method is: 1) using
the above formulas to approximate a requisite matching charac-
teristics for given load and source impedancesand by se-
lecting proper functions of , , , ,
and the four parameters of and and 2)
constructing the potential function and the characteristic
impedance profile of an NTL from those functions and
parameters.

In order to describe our algorithm clearly, we are going to
quote some important properties involved at first.

1) All four functions of and
are entire functions of order (type 1) and

so are their linear combinations [14], [15]. They can
be determined from their zeros and their asymptotic
behaviors uniquely. Especially if , the four
entire functions can be expressed in the following easy
calculating forms (see Appendix A):

(12)

(13)

(14)

(15)

where and are zeros of
and , respectively.

, . is the number of zeros that
we want to modify.

2) The Wronskian of and satisfy

(16)

We have verified that, in the case of a lossless NTL, the
above Wronskian will lead to the well-known relationship

(17)

3) The potential function can be uniquely constructed
either from the two sequences of and or from
and . The two potentials generated in these two ways
are in agreement if the above Wronskian relationship is
satisfied.

These properties show that a preassigned frequency re-
sponse can be approximated through adjusting the four zero
sequences of and , and the four parameters of

and , and from those zero sequences a
potential function can be constructed. Recalling that
relates with , these formulas actually have associated
the frequency response of an NTL with its fabrication feature.
However, there still remains another problem to cope with. By
virtue of (5), we will find that and

. Thus, there exist four boundary
data for the second-order equation (4). In order that there exist
nontrivial solutions when solving from this equation, the
four parameters and must satisfy the
following additional conditions (see Appendix B):

(18)

(19)

Obviously, the problem of approximating a requisite
matching characteristics may be cast into a constrained non-
linear optimization problem.

In practice, complete matching can be achieved only at some
discrete frequency points through a tapered NTL with finite
length. Here, we assume to design an NTL to matchand

on the condition that ( for com-
plete matching) at discrete sampling frequencies

. The design may be accomplished in the fol-
lowing two steps.

Step 1) Determine and
from minimizing

(20)

being subject to conditions (16), (18), and (19).
is calculated from (6).

Condition (16) is inconvenient to apply directly
in calculation because it must be satisfied for all
values of . In the algorithm described below, we
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only request that this Wronskian relationship be sat-
isfied for all four zero sequences of and

.2 Based on this consideration, we defined an error
function from (16) as follows:

(21)

and from conditions (18) and (19), we defined

(22)

and are then
determined from minimizing the following object
function:

(23)

where vector
. are weighting factors. Naturally,

there are some limitations on controlling when
an NTL with finite length is used. It is difficult to
predict to what extent can be controlled for ar-
bitrary and . In the special case of real and

, is also an entire function of order not larger
than . Thus, can only be controlled at a dis-
crete frequency sequence with asymptotic behavior
like those of the above-mentioned zero sequences.
For complex and , the frequency range that can
be controlled tends to be much narrower. For imped-
ances with large imaginary parts, longer NTLs may
be required to reach satisfactory matching.

Step 2) Construct from solving the inverse problem of
(2), using either or and .

This has already been widely investigated, and
a numerical algorithm is available [16]. can
be calculated from . To calculate the practical
dimensions of the NTL, we have to representby

. For microstrip lines, we may first calculate the
linewidth and effective dielectric constant

from [17], and then calculate from

(24)

where is the light velocity in free space. There-
fore, the length of the tapered NTL is

2We cannot prove that the Wronskian is strictly satisfied for all� when it is
satisfied for the four zero sequences, but the errors stemmed from this simplifi-
cation can be expected to be very small due to the features of the four unctions
involved.

Fig. 1. Matching a lumped seriesRC load through an NTL.

, and the practical di-
mensions of the NTL can be determined from

.

III. A LGORITHM AND EXAMPLES

Let . It is readily verified that and are
not necessary to calculate in calculating . Initial data
may be chosen as

, and for
. The optimization process may be carried out iteratively

by adopting

(25)

where must be sufficiently small so that the process is stable.
Generally, should use a smaller value for larger and .

Without loss of generality, we consider the matching problem
in Fig. 1, where , and is a lumped seriesRCcircuit.

. Numerical results for three cases are as follows.

Case 1) Normalizing frequency is chosen as GHz.
varies from 1.5 to 10 pF. Sampling points are fixed
at GHz and GHz. Thus, we have

and . Fig. 2 show
the optimized and the corresponding simu-
lated results of , respectively. Smaller se-
ries causes a larger imaginary part of
in the passband for optimized NTLs tend to become
larger. Longer NTLs may be required to achieve
more satisfactory matching for smaller.

Case 2) pF, GHz. Two controlling points are
also selected, but the sampling spacing varies from
0.2 to 1 GHz. The numerical results are shown in
Fig. 3. It can be seen that the ripple between the
two sampling points is higher for a larger sampling
spacing.

Case 3) In practical applications, in order to obtain an NTL
that can be connected to outer lines continuously, we
may choose and to be fixed and put
them out of the optimization process. Though this
arrangement may deteriorate the matching charac-
teristics, the side effect can be compensated by using
a longer NTL. An example is also provided, where

. pF. Control-
ling frequencies are chosen as

GHz, . Normalizing frequencies are
chosen as GHz. Fig. 4 shows the optimized

and relating simulated . For com-
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(a) (b)

Fig. 2. Tapered NTLs for case 1:f = 2GHz.Z = 50
.R = 100
.C = 1:5 pF� 10 pF. Two sampling points are fixed atf = 1GHz,f = 1:25GHz.
M = 20. (a) OptimizedZ (x). (b) SimulatedjS (j!)j.

(a) (b)

Fig. 3. Tapered NTLs for case 2:f = 2 GHz.Z = 50 
.R = 100 
.C = 3 pF. Two sampling points are adopted with�f = 0:2; 0:25;0:33;0:5;1 GHz.
M = 20. (a) OptimizedZ (x). (b) SimulatedjS (j!)j.

(a) (b)

Fig. 4. Tapered NTLs for case 3:f = 1GHz.Z = 50
.R = 100
; C = 3 pF.f = [1+0:125(i�1)]GHz,i = 1; . . . ; N .M = 20 forN � 4;M = 40
for N > 4. (a) OptimizedZ (x). (b) SimulatedjS (j!)j.

parison, in Fig. 4(b), a simulated result of a conven-
tional short-circuited stub matching network for the

same and is also presented. Apparently, wider
matching band can be provided through an NTL.
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IV. CONCLUSION

The numerical method described in this paper can be used to
design tapered NTLs for matching complex loads. Numerical
examples presented not only validate this method, but also sug-
gest some ways to control the frequency range of matching and
the passband ripple levels of a tapered NTL.

APPENDIX A

We take (12) as an example.
It is already known that can be expressed as [14]

(26)

where is a constant, and are zeroes of . From the
estimate of as [15],
we have

(27)

Using , the left-hand side of (27)
can be further written as

(28)

When , we have . It is not diffi-
cult to check that the canonical multiplication at the right-hand
side of (28) is uniformly convergent, at least in an interval of

. This enable us to pass the limit into the
product in (28). Thus,

(29)

Therefore, . Hence,

(30)

Furthermore, if we assume that for , then

(31)

APPENDIX B

Clearly, (4) is a special case of (2) for . Thus, we can
write

(32)

From the boundary conditions at , we have
and . Hence,

(33)

and at , the following relations must be observed:

(34)

(35)
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